4 research outputs found

    The effect of different feeding system on fatty acids composition of cowʼs milk

    Get PDF
    Article Details: Received: 2020-01-16 | Accepted: 2020-01-22 | Available online: 2020-03-31https://doi.org/10.15414/afz.2020.23.01.37-41The aim of the experiment was study the effect of different feeding system on fatty acids (FA) profile of cow’s milk. The tank’s samples from two farms were collected. On these farms breed: the Slovak Spotted cattle was reared. Feeding system was realized on the base pasture + supplementary feeding without silage – grazing feeding system (farm A) and silage feeding system (farm B). The FA profile in the milk samples with the apparatus (Agilent 6890A GC, Agilent technologies, USA) were analysed. Feeding system affects FA profile of cow’s milk. Significantly higher proportion of FA in milk samples: C4:0, C17:0, C18:1 cis-n9, C18:2 cis-n9, C18:3-n3 and C20:0 in milk from grazing feeding system (farm A) was detected. The samples of milk only from this feeding system contained C20:5 n3. Significantly higher content of 18:2 cis n6 and presence of C13:0, C20:3 n6 and C20:4 n6 only in milk samples from silage feeding system were determined. Significantly lower proportion of saturated FA was typical for milk from farm A and significantly higher proportion of polyunsaturated FA was characteristic for the samples from farm B. The influence of the feeding system on the monounsaturated FA content was not confirmed. In milk samples from both feeding systems very different n6/n3 FA ratio was detected, with lower value for milk from grazing feeding system (1.36 vs. 9.12).Keywords: dairy cattle, milk, fatty acids, feeding systemReferencesAlothman , M. et al. (2019). The “grass-fed” milk story: understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods, 8(8), 350.Bagnicka , E. et al. (2010). Expression and polymorphism of defensins in farm animals. Acta Biochimica Polonica, 57(4), 487–497.Barca , J. et al. (2018). Milk fatty acid profile from cows fed with mixed rations and different access time to pastureland during early lactation. Journal of Animal Physiology and Animal Nutrition, 102(3), 620–629.Blaško , J. et al. (2010). Fatty acid composition of summer and winter cows’ milk and butter. Journal of Food and Nutrition Research, 49(4), 169–177.Boro , P. et al. (2016). Genetic and non-genetic factors affecting milk composition in dairy cows. International Journal of Advanced Biological Research, 6(2), 170–174.BSSR. (2017). The breeding services of the Slovak republic, s.e. The results of dairy herd milk recording in Slovak republic year 2017. Retrieved January 7, 2020 from http://test.plis.sk/volne/RocenkaMagazin/Rocenka.aspx?id=mlhd2017/BSSR. (2018). Breeding services of the Slovak Republic, s.e. The results of dairy herd milk recording in Slovak Republic foryear 2018. Retrieved January 7, 2020 from http://test.plis.sk/volne/rocenkamagazin/rocenka.aspx?id=mlhd2018/Bujko , J. et al. (2018). The impact of genetic and nongenetic factors on somatic cell count as a monitor of udder health in Slovak Simmental dairy cows. Acta fytotechnica et zootechnica, 21(4), 166–168. https://doi.org/10.15414/afz.2018.21.04.166-168D’urso, S. et al. (2008). Influence of pasture on fatty acid profile of goat milk. Journal of Animal Physiology and Animal Nutrition, 92(3), 405–410.Elgersma , A. (2015). Grazing increases the unsaturated fatty acid concentration of milk from grass‐fed cows: A review of the contributing factors, challenges and future perspectives.European Journal of Lipid Science and Technology, 117(9), 1345–1369.Filipejová, T. et al. (2010). Evaluation of selected biochemical milk parameters of dairy cows and their correlations. Potravinárstvo, 4, 12–15.Gálik, B. et al. (2011). Biotechnology and animal food quality. Nitra: Slovak University of Agriculture in Nitra.Guler, G. O. et al. (2010). Fatty acid composition and conjugated linoleic acid (CLA) content of some commercial milk in Turkey. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(Supplement-A), 37–40.Haug , A., Høstmark , A. T. and Harstad , O. M. (2007). Bovine milk in human nutrition – a review. Lipids in health and disease, 6(25), 1–16.Hudečková P. et al. (2011). Plants oil in the diet for laying hens. In Strakov á, E. and Suchý, P. (eds.): 9th Kabrt’s dietetic days. Brno: Tribun EU, 144–147. In Czech.Kadlečík, O. et al. (2013). Diversity of cattle breeds in Slovakia. Slovak Journal of Animal Science, 46(4), 145–150.Kajaba , I. et al. (2009). Role of milk and dairy products in prevention of cardiovascular distribution. In Fatrcová Šramková, K. (eds.): Zobor day and West Slovakia days about osteoporosis 2009. Nitra: SUA in Nitra, 70–77. In Slovak.Kalač, P. and Samkov á, E. (2010). The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, 55(12), 521–537.Kubicová, Ľ. and Habánová, M. (2012). Development of milk consumption and marketing analysis of its demand. Potravinarstvo Slovak Journal of Food Sciences, 6(4), 66–72.Lorková, M. et al. (2017). Consumption of milk and dairy products in patients with cardiovascular disease. In Gálik, B. and Zelinkov á, G. (eds.): Proceedings of Slovak community for agricultural, forestry, food and veterinary sciences. Nitra: SUA in Nitra, 98–107. In Slovak.Lindmark-Månsson, H. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 2008, 52.Markiewicz-Kęszycka , M. et al. (2013). Fatty acid profile of milk-a review. Bulletin of the Veterinary Institute in Pulawy, 57(2), 135–139.Martin , B. et al. (2002). Variabilité de la teneur des laits en constituants d‘intérêt nutritionnel selon la nature des fourrages consommés par les vaches laitières. Rencontres Recherche Ruminants, 9, 347–350.Martin , B. et al. (2004). Effects of grass-based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products. In Lúscher, A. et al. (eds.): Land use systems in grassland dominated regions. Proceedings of the 20th general meeting of the European grassland federation, Zurich: Hochschulverlag AG an der ETH, 876–886.Mendoza, A., Cajarville , C. and Repetto , J. L. (2016). Intake, milk production, and milk fatty acid profile of dairy cows fed diets combining fresh forage with a total mixed ration. Journal of Dairy Science, 99(3), 1938–1944.Miluchová, M., Gábor, M. and Trakovick á, A. (2014). Analysis of genetic structure in Slovak Pinzgau cattle using five candidate genes related to milk production traits. Genetika, 46(3), 863–875.Morales -Almaráz, E. et al. (2017). Parity and grazingtime effects on milk fatty acid profile in dairy cows. Animal Production Science, 58(7), 1233–1238.Muehlhoff, E., Bennett , A. and McMahon, D. (2013). Milk and dairy products in human nutrition. Rome: Food and Agriculture Organization of the United Nations (FAO).O’Callaghan , T. F. et al. (2016). Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, 99(12), 9424–9440.Regal, V. (1956). Microscopic method for evaluating feed quality. In Proceedings ČSAZV, Plant production, 6, 31 – 40. (in Czech).Rolinec, M. et al. (2018). Change of feeding affects fatty acids profile of goat’s milk. Journal of Central European Agriculture, 19(4), 883–889.Szwajkowska , M. et al. (2011). Bovine milk proteins asthe source of bioactive peptides influencing the consumers’ immune system–a review. Animal Science Papers and Reports, 29(4), 269–280.

    The influence of addition of Lactobacillus plantarum and Lactobacillus brevis on the fermentation quality of silages from permanent grassland

    Get PDF
    Cieľom experimentu bolo zistiť vplyv prídavku Lactobacillus plantarum a Lactobacillus brevis na kvalitu fermentačného procesu siláží z trvalých trávnych porastov po 12 mesiacoch uskladnenia v silážnych vakoch. Vo fytomase trvalého trávneho porastu predstavoval podiel tráv 86% (s prevahou Arrhenatherum elatius), bylín 13% a ďatelinovín (1%). Experiment pozostával z dvoch variantov: variant C (kontrola - bez aditíva) a variant A s prídavkom biologického aditíva. V pokusnom variante A sa aplikoval biologický prípravok (Lactobacillus plantarum a Lactobacillus brevis 2*105 KTJ (kolónií tvoriacich jednotky)*g-1) na uvädnutú trávnu hmotu v dávke 1 liter na tonu. Silážovaná hmota sa pomocou lisu uskladnila do silážnych vakov s priemerom 2,7 m (jeden vak s hmotou bez aditíva - variant C a druhý vak s prídavkom aditíva -variant A). Po 12 mesiacoch uskladnenia sa odobrali priemerné vzorky siláží pre stanovenie parametrov fermentačného procesu. Aplikácia mikrobiálneho aditíva na báze homo a heterofermentatívnych baktérií mliečneho kvasenia (Lactobacillus plantarum a Lactobacillus brevis) ovplyvnila kvalitu siláží z trvalých trávnych porastov po 12 mesiacoch uskladnenia štatisticky preukazne nižším obsahom kyseliny octovej, maslovej, alkoholov, stupňom proteolýzy a nižšou hodnotou pH. Výsledky potvrdili, že prídavok Lactobacillus plantarum a Lactobacillus brevis pozitívne ovplyvnil kvalitu fermentačného procesu siláží z trvalých trávnych porastov.The aim of the experiment was to determine the influence of the addition of Lactobacillus plantarum and Lactobacillus brevis on the quality of the fermentation process of silage from the permanent grassland after 12 months of storage in silage bags. In the phytomas of the permanent grassland the proportion of grass was 86% (with the prevalence of Arrhenatherum elatius), herbs 13% and leguminous 1%. The experiment consisted of two variants: variant C (control-without additive) and variant A with the addition of additive. In experimental variant A, biological additive consisting of Lactobacillus plantarum and Lactobacillus brevis 2*105 CFU (colony forming units)*g-1 was applied on wilted grass matter at a rate of 1 liter per ton. The silage matter was stored with a press in silo bags with a diameter of 2.7 m (first bag without additive - variant C and second bag with additive - variant A). After 12 months of storage, average samples of silages were taken to determine the parameters of fermentation process. Application of biological additive based on homofermentative and heterofermentative lactic acid bacteria (Lactobacillus plantarum and Lactobacillus brevis) influenced the quality of the silages from permanent grassland after 12 months of storage with statistically lower acetic and butyric acid content, alcohols, degree of proteolysis and lower pH value. The results confirmed, that the addition Lactobacillus plantarum and Lactobacillus brevis had positive influence on the quality of the fermentation process of silage from the permanent grassland

    Fatty acid composition of maize silages from different hybrids

    Get PDF
    Received: 2016-12-13 | Accepted: 2016-12-18 | Available online: 2017-12-31http://dx.doi.org/10.15414/afz.2017.20.04.95-98The aim of this research was to determine the fatty acid content in maize silages of different hybrids.  Grain hybrid with FAO number 420 and silage hybrid with stay-green maturation with FAO number 450 were evaluated. Maize hybrids were grown under the same agro-ecological conditions, and harvested on growing degree days 1277 (FAO 420) and 1297 (FAO 450).  Whole-plant maize was chopped to 10 mm by harvester with kernel processor and immediately ensiled in plastic barrels (volume 50 dm3). Maize matter was ensiled without silage additives. For fatty acids analyses samples of maize silages were taken after 8 week of ensiling. Content of fatty acids was quantified by gas chromatography. Examined maize of both hybrids had the highest linoleic acid content, followed by oleic acid and third highest content of palmitic acid. The results confirmed differences in fatty acid content in maize silages of different hybrids. In silages of grain hybrid was detected significantly higher content of palmitic acid and cis-11-eicosenoic acid and significantly lower content of oleic acid in compared with silage of silage hybrid. This ultimately resulted in a higher polyunsaturated fatty acids content (P < 0.05) in maize silage from grain hybrid and lower monounsaturated fatty acids content (P < 0.05) in maize silage from stay green hybrid. Keywords: fatty acid, maize, hybrid, silageReferences Alezones, J. et al. (2010) Caracterización del perfil de ácidos grasos en granos de híbridosde maíz blanco cultivados en Venezuela. Archivos Latinoamericanos de Nutricion, vol. 60, no. 4, pp. 397–404.Alves, S.P. et al. (2011) Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. Journal of Animal Science, vol. 89, no. 8, pp. 2537–2545. doi: https://dx.doi.org/10.2527/jas.2010-3128Arvidsson, K., Gustavsson, A.-M. and Martinsson, K. (2009) Effects of conservation method on fatty acid composition of silage. Animal Feed Science and Technology, vol. 148, no. 2–4, pp. 241–252. http://dx.doi.org/10.1016/j.anifeedsci.2008.04.003Balušíková, Ľ. et al. (2017) Fatty acids of maize silages of different hybrids. In NutriNet 2017. České Budějovice: University of South Bohemia in České Budějovice, pp. 13–19.Bíro, D. et al. (2014) Conservation and adjustment of feeds. Nitra: Slovak University of Agriculture. 223 p. (in Slovak).Blažková, K. et al. (2012) Comparison of in vivo and in vitro digestibility in horses. In Koně 2012. České Budějovice: University of South Bohemia in České Budějovice, pp. 1–7.Boufaïed, H. et al. (2003) Fatty acids in forages. I. Factors affecting concentrations. Canadian Journal of Animal Science, vol. 83, no. 3, pp. 501–511. doi:http://dx.doi.org/10.4141/a02-098Capraro, D. et al. (2017) Feeding finishing heavy pigs with corn silages: effects on backfat fatty acid composition and ham weight losses during seasoning. Italian Journal of Animal Science, vol.16, no. 4, pp. 588–592. doi:http://dx.doi.org/10.1080/1828051x.2017.1302825Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. L 54/1. 130 p.Eurostat 1 Green maize by area, production and humidity. [Online] Available from:  http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tag00101&plugin=1 [Accessed: 2017- 10-30].Galassi, G. et al. (2016) Digestibility, metabolic utilisation and effects on growth and slaughter traits of diets containing whole plant maize silage in heavy pigs. Italian Journal of Animal Science, vol. 16, no. 1, pp. 122–131. doi:http://dx.doi.org/10.1080/1828051x.2016.1269299Glasser, E. et al. (2013) Fat and fatty acid content and composition of forages: a meta-analysis. Animal Feed Science and Technology, vol.185, no. 1–2, pp. 19–34. doi:http://dx.doi.org/10.1016/j.anifeedsci.2013.06.010Guermah, H., Maertens, L. and Berchiche, M. (2016) Nutritive value of brewersʼ grain and maize silage for fattening rabbits. World Rabbit Science, vol. 24, no. 3, pp. 183–189. doi: http://dx.doi.org/10.4995/wrs.2016.4353Han, L. and Zhou, H. (2013) Effects of ensiling process and antioxidants on fatty acids concentrations and compositions in corn silages. Journal of Animal Science and Biotechnology, vol. 4, no. 1, pp. 1–7. doi: http://dx.doi.org/10.1186%2f2049-1891-4-48Kalač, P. and Samková, E. (2010) The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, vol. 55, no. 12, pp. 521–537.Khan, N.A.,  Cone, J.W. and Hendriks, W.H. (2009) Stability of fatty acids in grass and maize silages after exposure to air during the feed out period. Animal Feed Science and Technology, vol. 154, no. 3–4, pp. 183–192. doi:http://dx.doi.org/10.1016/j.anifeedsci.2009.09.005Khan, N.A. et al. (2011) Changes in fatty acid content and composition in silage maize during grain filling. Journal of Science of Food and Agriculture, vol. 91, no.6, pp. 1041–1049. doi:http://dx.doi.org/10.1002/jsfa.4279Khan, N.A. et al. (2012) Causes of variation in fatty acid content and composition in grass and maize silages. Animal Feed Science and Technology, vol. 174, no. 1–2, pp. 36–45. doi: http://dx.doi.org/10.1016/j.anifeedsci.2012.02.006KHAN, N.A. et al. (2015) Effect of species and harvest maturity on the fatty acids profile of tropical forages. The Journal of Animal & Plant Sciences, vol. 25, no. 3, pp. 739–746.Kokoszyński, D. et al. (2014) Effect of corn silage and quantitative feed restriction on growth performance, body measurements, and carcass tissue composition in White Kołuda W31 geese. Poultry Science,   vol. 93, no. 8, pp.1993–1999. doi:http://dx.doi.org/10.3382/ps.2013-03833Loučka, R. and Tyrolová, Y. (2013) Good practice for maize silaging. Praha: Institute of Animal Science.Mir, P.S. (2004) Fats in Corn Silage. Advanced Silage Corn Management 2004. [Online] Available from: http://www.farmwest.com/chapter-8-quality-of-corn-silage [Accessed: 2017- 10-30].Mojica-Rodríguez, J.E. et al. (2017) Effect of stage of maturity on fatty acid profile in tropical grasses. Corpoica Ciencia Tecnología Agropecuaria, vol. 18, no.2, pp. 217–232. doi: http://dx.doi.org/10.21930/rcta.vol18_num2_art:623Nazir, N.A. et al. (2011) Changes in fatty acid content and composition in silage maize during grain filling. Journal of the Science of Food and Agriculture, vol. 91, no. 6, pp.1041–1049. http://dx.doi.org/10.1002/jsfa.4279Oliveira, M.A. et al. (2012) Fatty acids profile of milk from cows fed different maize silage levels and extruded soybeans. Revista Brasileira de Saúde e Produção Animal, vol. 13, no. 1, pp. 192–203. doi:  http://dx.doi.org/10.1590/s1519-99402012000100017SAS Institute (2008) Statistical Analysis System Institute, Version 9.2. SAS Institute, Cary, NC, USA.Van Ranst, G. et al. (2009) Influence of herbage species, cultivar and cutting date on fatty acid composition of herbage and lipid metabolism during ensiling. Grass and Forage Science, vol. 64, no. 2, pp. 196–207. doi:http://dx.doi.org/10.1111/j.1365-2494.2009.00686.xZeman, L. et al. (2006) Nutrition and feeding of livestock. Praha: Profi Press. 360 p. (in Czech)

    The influence of addition of Lactobacillus plantarum and Lactobacillus brevis on the fermentation quality of silages from permanent grassland

    Get PDF
    Cieľom experimentu bolo zistiť vplyv prídavku Lactobacillus plantarum a Lactobacillus brevis na kvalitu fermentačného procesu siláží z trvalých trávnych porastov po 12 mesiacoch uskladnenia v silážnych vakoch. Vo fytomase trvalého trávneho porastu predstavoval podiel tráv 86% (s prevahou Arrhenatherum elatius), bylín 13% a ďatelinovín (1%). Experiment pozostával z dvoch variantov: variant C (kontrola - bez aditíva) a variant A s prídavkom biologického aditíva. V pokusnom variante A sa aplikoval biologický prípravok (Lactobacillus plantarum a Lactobacillus brevis 2*105 KTJ (kolónií tvoriacich jednotky)*g-1) na uvädnutú trávnu hmotu v dávke 1 liter na tonu. Silážovaná hmota sa pomocou lisu uskladnila do silážnych vakov s priemerom 2,7 m (jeden vak s hmotou bez aditíva - variant C a druhý vak s prídavkom aditíva -variant A). Po 12 mesiacoch uskladnenia sa odobrali priemerné vzorky siláží pre stanovenie parametrov fermentačného procesu. Aplikácia mikrobiálneho aditíva na báze homo a heterofermentatívnych baktérií mliečneho kvasenia (Lactobacillus plantarum a Lactobacillus brevis) ovplyvnila kvalitu siláží z trvalých trávnych porastov po 12 mesiacoch uskladnenia štatisticky preukazne nižším obsahom kyseliny octovej, maslovej, alkoholov, stupňom proteolýzy a nižšou hodnotou pH. Výsledky potvrdili, že prídavok Lactobacillus plantarum a Lactobacillus brevis pozitívne ovplyvnil kvalitu fermentačného procesu siláží z trvalých trávnych porastov.The aim of the experiment was to determine the influence of the addition of Lactobacillus plantarum and Lactobacillus brevis on the quality of the fermentation process of silage from the permanent grassland after 12 months of storage in silage bags. In the phytomas of the permanent grassland the proportion of grass was 86% (with the prevalence of Arrhenatherum elatius), herbs 13% and leguminous 1%. The experiment consisted of two variants: variant C (control-without additive) and variant A with the addition of additive. In experimental variant A, biological additive consisting of Lactobacillus plantarum and Lactobacillus brevis 2*105 CFU (colony forming units)*g-1 was applied on wilted grass matter at a rate of 1 liter per ton. The silage matter was stored with a press in silo bags with a diameter of 2.7 m (first bag without additive - variant C and second bag with additive - variant A). After 12 months of storage, average samples of silages were taken to determine the parameters of fermentation process. Application of biological additive based on homofermentative and heterofermentative lactic acid bacteria (Lactobacillus plantarum and Lactobacillus brevis) influenced the quality of the silages from permanent grassland after 12 months of storage with statistically lower acetic and butyric acid content, alcohols, degree of proteolysis and lower pH value. The results confirmed, that the addition Lactobacillus plantarum and Lactobacillus brevis had positive influence on the quality of the fermentation process of silage from the permanent grassland
    corecore